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mE-FZIGHT MEASUREMENTS OF STAGNATION-POINT CONVECTIVE 

HEAT TRANSFElR AT VELOCITIES TO 41,000 FP/573? 

By Dale L.  Compton and 
Ames Research 

SUMMARY 

David M. Cooper 
Center 

Measurements o f  stagnation-point convective heat-transfer r a t e s  i n  a i r ,  
a t  ve loc i t i e s  t o  41,000 f t / sec ,  a r e  presented. A new technique w a s  developed 
a t  the  Ames Research Center t o  make these measurements. 
l/k-inch-diameter aluminum hemispheres are  gun launched in to  t h e  prototype of 
the  Ames hypervelocity f ree- f l igh t  f a c i l i t y  a t  a ve loc i ty  of 24,000 f t / s ec  
in to  s t i l l  air ,  and at combined ve loc i t i e s  of 36,000 and 41,000 f t / s ec  in to  
the  countercurrent airstream. A t  some point on i ts  f l i g h t  path the  model 
begins t o  m e l t ,  and molten aluminum streams f romthe  model surface in to  the 
wake, where it can be seen i n  spark shadowgraphs. The stagnation-point heat- 
ing rate i s  then deduced by computing the  heating r a t e  required t o  produce 
melting at the  observed time. The low-speed t e s t s  a t  24,000 f t / s ec  served as 
ca l ibra t ion  t e s t s  f o r  the  technique and showed i t s  workability. 

In t h i s  technique, 

To study the  possible e f f ec t s  of model material  on the  convective heating 
r a t e ,  several  of the  aluminum models were plated with a 0.0005-inch-thick 
nickel  s h e l l .  These models were a l s o  subjected t o  ca l ibra t ion  t e s t s  and then 
used f o r  measuring convective heating r a t e  a t  a ve loc i ty  of 36,000 f t / s ec .  

The heating r a t e s  measured from a l l  o f  the t e s t s  agree reasonably well 
with each other and with the  majority of shock-tube data ,  and support theor ies  
which predict  t h a t  ionizat ion e f f ec t s  on convective heating rates i n  a i r  w i l l  
be small. No differences i n  heating rate were found f o r  the  two model surface 
materials t e s t e d .  

INTRODUCTION 

Signif icant  numbers of ionized atoms are present i n  the  shock layers  on 
vehicles enter ing the  e a r t h ' s  atmosphere a t  superorbital  speeds. Several 
invest igat ions,  both theo re t i ca l  and experimental, have been undertaken t o  
determine whether t h i s  ionizat ion has an important e f f e c t  on convective heat- 
ing.  The r e s u l t s  of  t h e  theo re t i ca l  s tud ies  were o r ig ina l ly  i n  wide disagree- 
ment * However, theore t ic ians  now generally agree t h a t ,  fo r  f l i g h t  conditions 
studied t o  da te ,  ionizat ion r e s u l t s  i n  only minor changes t o  the  convective 
heating. A l l  experimental data  reported thus f a r  f o r  t h i s  speed range, with 
the  exception of the r e s u l t s  from the p r e s e n t t e s t s ,  have been obtained with 
s ta t ionary  models i n  shock tubes, and experimental disagreement e x i s t s  among 
various s e t s  of shock-tube da ta .  Data taken with an independent technique a re  
therefore  of considerable value. One such technique, developed a t  t he  Ames 
Research Center, uses the time of onset of melting on small free-flying models 



as a measure of the  stagnation-point convective heating rate.  
purpose of t he  present paper t o  describe t h i s  technique i n  d e t a i l ,  t o  report  
the  data obtainea,'and t o  make a p a r t i a l  evaluation of t he  e f f ec t  of surface 
material  on convective heating. 

It i s  the  , 
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SYMBOLS 

material 

grouping defined by equations (9) 

constant of proport ional i ty  

t o t a l  drag coef f ic ien t  

enthalpy 

grouping defined by equations (A3)  

thermal conductivity of model mater ia l  

thickness o f  m a t e r i a l 1  (appendix A) 

model mass 

Reynolds number, 
PS 

pres  sure 

heat-transfer r a t e  

radius  of  curvature of model face 

shear s t r e s s  gradient 

time 

temperature 

ve loc i ty  

dis tance along the f l i g h t  path 

distance in to  the  model from the  stagnation point ,  normal t o  the  
surface 

grouping defined by equations ( A 3 )  



p . grouping i n  equation (8) 

Y 

I-1 viscos i ty  

P a i r  dens i ty  

fac tor  of proport ional i ty  i n  equation (6) 

standard atmospheric densi ty  

0 grouping defined by equations (A3)  

7 d m y  variable  of integrat ion 

PO 

Sub s c r i p t  s 

i conditions p r io r  t o  launch 

L launch conditions 

S conditions immediately behind shock 

st stagnation conditions 

W w a l l  (model surface) conditions 

02 free-stream conditions 

1 mater ia l  1 

2 material 2 

Melting Onset Technique 

This technique uses the  time of onset of melting on small aluminum models 
as a measure of t h e  stagnation-point heating ra te .  
hemisphere i s  gun launched a t  high ve loc i ty  e i ther  in to  s t i l l  a i r  i n  a b a l l i s -  
t i c  range o r  i n to  an oncoming airstream i n  a free-f l ight  wind tunnel .  Heat- 
ing experienced by the model as it decelerates  r a i se s  i t s  temperature and 
a t  some point along the  f l i g h t  path the surface of the model begins t o  m e l t .  
Melting occurs f i rs t  i n  the  stagnation region, where the heating r a t e  i s  high- 
e s t .  
model surface and in to  the  wake. 
t i a l l y  opaque screen which i s  v i s ib l e  i n  t h e  wake region on spark shadow- 
graphs. If the  free-stream densi ty  and model s ize  are adjusted correct ly ,  
melting can be made t o  begin while t he  model i s  f lying through the instru-  
mented tes t  sec t ion  of t he  range; thus the t i m e  a t  which melting first occurs 

A sabot-held aluminum 

Since the  v i scos i ty  of  molten aluminum i s  low, aluminum flows o f f  t he  
This l i qu id  aluminum runoff produces a par- 

3 



can be determined from successive shadowgraphs. With the  t i m e  of melting b 

onset known, the stagnation-point heating r a t e  can be determined by solving 
the  heat-conduction equation f o r  t he  model i n t e r i o r .  
described in  d e t a i l  i n  the  following sect ions.  

This technique i s  

Test Equipment 

Models were launched from a light-gas gun in to  the  prototype of t he  Ames 
hy-pervelocity f ree- f l igh t  f a c i l i t y ,  which may be operated e i the r  as a ball is-  
t i c  range or as a f ree- f l igh t  wind tunnel .  
i s  shown as f igure  1. 
0.50 deformable-piston, l ight-gas gun. 
beginning 13 f e e t  from the gun muzzle, instrumented with 11 spark shadowgraph 
s ta t ions  spaced a t  4-foot in te rva ls  along i t s  length. '  
between s t a t ions  i s  recorded on e lec t ronic  chronographs. The time-distance 
and angle-of-attack h i s to r i e s  of the model a re  extracted from the  shadowgraph 
pictures  and chronograph records. 
t i o n  i s  shown i n  the  inse t  of f igure  1. 

A schematic view of t he  f a c i l i t y  
The model launcher used fo r  these t e s t s  w a s  a ca l ibe r  

Models f l y  through a t e s t  sect ion 

Model time of f l i g h t  

An enlarged view of pa r t  of the  tes t  sec- 

When t h i s  f a c i l i t y  i s  used as a f ree- f l igh t  wind tunnel,  the ai rs t ream i s  
supplied from a h-O-foot-long, 6-1/4-inch-diameter shock tube coupled t o  a com- 
bustion chamber of l i k e  dimensions. The energy for driving the  shock tube i s  
supplied by the  constant volume conibustion of H2 and O2 di lu ted  with He or He 
and N2. 
process has reached peak temperature and pressure.  The i n i t i a l  pressure r a t i o  
between the  dr iver  and driven gas,  adjusted t o  t a i l o r  t he  re f lec ted  shock wave 
a t  the in te r face ,  produces a stagnation region of high-temperature, high- 
pressure a i r .  A second diaphragm separating the  stagnation region of the  
shock tube from the t e s t  sect ion breaks spontaneously soon a f t e r  t he  incident 
shock wave r e f l e c t s  from it, allowing flow t o  begin i n  the  wind tunnel .  
pressure in  the t es t  sect ion i s  s e t  p r io r  t o  the run a t  such a l e v e l  t h a t  wind- 
tunnel s t a r t i n g  t rans ien ts  a r e  minimized. 
nominal Mach number 7 airs t ream which exhausts in to  a la rge  vacuum tank a t  t h e  
end of t he  t e s t  sect ion.  
reference 1. 

The shock-tube diaphragm i s  punctured shor t ly  a f t e r  t he  combustion 

The 

The contoured nozzle provides a 

A more complete descr ipt ion may be found i n  

Models and Sabots 

The models were 1/4-inch-diameter 7075 T6 aluminum hemispheres. 
model w a s  chosen because it i s  r e l a t i v e l y  easy t o  launch and because the  
stagnation-point heating r a t e  is  insens i t ive  t o  small angle of a t t ack .  

This 

A sketch of a model and sabot i s  shown i n  f igure 2 .  The sabot,  i n  addi- 
t i o n  t o  i t s  usual functions of supporting the  model during launch and providing 

1 A recent innovation t o  t h i s  system has been t o  adapt some of t he  shadow- 
graphs fo r  use with Kerr-cell shu t t e r s  t o  shorten exposure t i m e s  from about 
0.2 microsecond t o  0.03 microsecond. The increase in  model image sharpness 
is  s t r ik ing  (see f i g .  6 ) .  
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a .sea l  between the  model and launch b a r r e l ,  was designed t o  f u l l y  enclose the  
model t o  reduce heating t o  the model from three sources - b a r r e l  f r i c t i o n ,  
compressed gas i n  f ront  of  the sabot, and driver gas behind the sabot.  To 
fur ther  protect  t he  model from heating from the hot gun gases, a polyethylene 
gas s e a l  w a s  placed behind the sabot and several pieces of 0.001-inch-thick 
mylar were placed against  t h e  base of the  model. Although no t e s t s  were made 
t o  determine how ef fec t ive  t h i s  pa r t i cu la r  design w a s  i n  protect ing the  model 
from extraneous heating, a similar model and sabot configuration ( r e f .  2 )  was 
extremely successful.  

The t o t a l  weight of t he  model and sabot w a s  1 .3  grams. The maximum 
launch ve loc i ty  a t ta ined  w a s  26,960 f t / s ec  and ve loc i t ies  grea te r  than 
26,000 f t / s ec  were a t ta ined  rout inely.  

To study the  possible e f f ec t s  of gage material on convective heating, the 
surfaces of several  aluminum models were nickel-electroplated.  The thickness 
of t he  nickel  coating w a s  0.0005inch, t h i ck  enough t o  assure a coherent nickel  
surface (shown by examination of the  model under a microscope) and t h i n  enough 
t h a t  f o r  purposes of solving the  heat-conduction equation f o r  t he  i n t e r i o r  of 
the model t he  nickel  coat could be neglected (calculat ions leading t o  t h i s  
conclusion a re  presented i n  appendix A ) .  Therefore, with respect t o  convec- 
t i v e  heat t r ans fe r ,  these nickel-plated models had the  surface propert ies  (and 
therefore  the  ca t a ly t i c  eff ic iency with respect t o  surface recombination) of 
nickel ,  and with respect t o  conduction within the  model, they had primarily 
the  bulk propert ies  of aluminum. 
nickel-plated models do not depend on the exact numerical values of t he  ther- 
ma l  propert ies  of nickel .  

Thus the  heating-rate da t a  taken using these 

Test Conditions 

The results of t e s t s  a t  three d i f f e ren t  ve loc i t i e s  a re  described i n  t h i s  
paper. The nominal t e s t  conditions are summarized i n  the  t ab le  below. 

T e s t  ve loc i ty ,  f t / s ec  24,000 

Model veloci ty ,  f t / sec  24,000 
Airstream ve loc i ty ,  f t / s ec  0 

Airstream reservoi r  press ,  a t m  --- 
P, Y slug s/ft3 
P,, a t m  0.066 - 0.120 

i . 6 ~ 1 0 - *  - 2.9x10-* 

Ps t ,  a t m  43 - 76 
Reynolds number, NR 1 . 4 8 ~ I - O ~  - 2.59x105 

36, ooo 

12,000 

138 
1.5ao-5 

24,000 

0.021 

8.8 
1 . 54fi04 

41,000 
26,500 

160 

o .6x10-~ 
0.011 
4.6 

14,500 

7 73fiO3 

It is  of  i n t e r e s t  t o  compare these conditions with the  conditions attained 
i n  shock-tube t e s t s  on fixed models a t  comparable t o t a l  enthalpy l eve l s .  If 
t h e  shock-tube t e s t  conditions i n  t h e  following t ab le  a re  compared with those 
i n  t h e  t ab le  above we see t h a t ,  a t  the  higher ve loc i ty  conditions where ioni- 
zation i s  appreciable, the stagnation conditions a re  similar. Simulated 



Reynolds numbers i n  shock-tube t e s t s  a r e  general ly  higher than i n  the  present. 
tes ts ,  pa r t ly  because of  l a rge r  shock-tube models. The Reynolds numbers given 
i n  t h e  table  below are based upon a 1/4-inch model nose radius .  

Simulated veloci ty ,  f t / s ec  24,000 36, ooo 41,000 

Stagnation pressure, a t m  4.6 3.6 - 14.4 4.6 
I n i t i a l  pressure, mm Hg 1 .o 0.25 - 1.0 0.25 
Reynolds number based on 3.77X1O4 1.43xlO4 - 4.87xlo4 1.53~J-0~ 
simulated ve loc i ty  

Stagnation enthalpy, Btu/lb 11,640 26,040 33,740 

DATA RFDUCTION 

Wind-Tunnel Data Reduct ion 

To obtain heating-rate data ,  it i s  necessary t o  know the  free-stream 
properties a s  a function of time along the  f l i g h t  t ra jec tory .  For the  tests 
a t  24,000 f t / sec ,  i n  which the  models were f i r e d  in to  s t i l l  a i r ,  t he  f ree-  
stream properties were determined from the  measured pressure and temperature 
of the  a i r  i n  t he  tunnel immediately p r i o r  t o  the  f i r i n g  of each shot .  
these t e s t s  t he  model, though decelerating, w a s  f ly ing  in to  a constant densi ty  
environment. 

For 

For t he  t e s t s  a t  36,000 and 41,000 f t / s ec ,  i n  which the  models were f i r e d  
in to  the supersonic airstream, a more complex s i tua t ion  exis ted.  To reach the  
steady airstream, the model must f l y  across the  vacuum tank (see f i g .  1) where 
properties w i l l  be very poorly defined a f t e r  the  en t ry  of flow from the  wind 
tunnel.  To avoid t h i s  d i f f i c u l t y ,  models were launched a t  such a time as t o  
meet the airs t ream before it had begun t o  en ter  the  vacuum tank. 
cedure i s  i l l u s t r a t e d  i n  f igure 3. It can be seen from t h i s  f igure t h a t  t he  
model must f l y  through three d i s t i n c t  regions: (1) the  low-pressure (approxi- 
mately 300 microns Hg) s t i l l  a i r  i n  the  vacuum tank and i n  the  entrance t o  the  
t es t  section, (2) t he  wind-tunnel s t a r t i n g  shock wave and the a i r  i n i t i a l l y  i n  
the  tunnel which has been compressed by t h i s  s t a r t i n g  shock wave, and (3)  the  
desired t e s t  environment - the  steady hypersonic airstream. The propert ies  i n  
each of these regions must be determined i n  order t o  assess  the  contribution 
of each t o  the t o t a l  heating. In  region 1 the  a i r  ve loc i ty  i s  zero, and t h e  
temperature and pressure were measured p r io r  t o  each t e s t .  Both the  extent of 
and properties i n  region 2 were determined from ca l ibra t ion  t e s t s  by measuring 
the  tunnel p i t o t  pressure and w a l l  s t a t i c  pressure as functions of time. It 
was determined tha t  t he  model f l i e s  through region 2 fo r  a dis tance of about 
6 t o  8 f e e t .  The measured speed of t h e  s t a r t i n g  shock wave and t h e  measured 
properties i n  region 1 were used t o  ca lcu la te  a i r  ve loc i ty  and dens i ty  immedi- 
a t e l y  behind the  s t a r t i ng  shock. 
vary l i nea r ly  between t h e i r  values immediately behind the  s t a r t i n g  shock and 
t h e i r  values in  region 3 .  
w i l l  be considered i n  appendix B. The propert ies  i n  region 3 were determined 
from measurements of (a) the  pressure and temperature of t he  a i r  i n  the  shock 

This pro- 

The dens i ty  and ve loc i ty  were assumed t o  

The e f f ec t  of these assumptions on the t e s t  results 
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tube p r io r  t o  the  run, (b) the ve loc i ty  of the i n i t i a l  shock wave i n  the  shock 
tbbe, and ( c )  the  pressure behind the ref lected shock wave ( the  reservoi r  
pressure dr iving the wind tunnel). 
enthalpy f o r  t he  wind-tunnel reservoir  w a s  calculated by applying the appro- 
p r i a t e  shock-tube equations. Wind-tunnel free-stream propert ies  ( the  proper- 
t i e s  i n  region 3) were then determined from the  s t a t i c  pressure measured a t  
several  points  on the  t e s t  section w a l l  by assuming real-gas flow between the  
reservoir  and the  t e s t  section t o  be isentropic and i n  equilibrium. 

From these measurements, the  stagnation 

For t he  12,000 f t / sec  airstream a probe mounted i n  t h e  tunnel during 
ca l ibra t ion  t e s t s  showed p i t o t  pressures consistent with predictions based on 
the above measurements. For t he  14,500 f t /sec airstream, the  p i t o t  probe 
showed somewhat lower (approximately 25 percent) p i t o t  pressures than expected. 
The de ta i led  reasons f o r  these low p i t o t  pressures a re  not present ly  under- 
stood, but they a re  probably due t o  energy losses i n  t he  tunnel.  
of t he  resu l t ing  uncertaint ies  i n  a i rs t ream properties on the  heating rate is  
not severe, and w i l l  be considered in  d e t a i l  l a t e r .  

The e f f ec t  

Solutions t o  the  Heat-Conduction Equation 

In order t o  relate the  melting onset t i m e  t o  the  heat-transfer rate, it 
w a s  necessary t o  solve the heat-conduction equation f o r  t he  i n t e r i o r  of t he  
model. Calculations showed t h a t  f o r  t he  short f l i g h t  t i m e s  being considered 
(approximately 2 msec) the  appreciably heated layer  within the  model w a s  t h i n  
( l e s s  than 10 percent of t he  model diameter), and t h a t  t he  one-dimensional 
form of t he  heat-conduction equation could be used. The boundary conditions 
a re  those f o r  a semi-infinite s lab,  i n i t i a l l y  a t  uniform temperature, heated 
on i t s  exposed surface with a time-dependent heating rate. The time depend- 
ence of the  heating r a t e  a r i s e s  because of t h e  changing free-stream conditions 
and ve loc i ty  along the  f l i g h t  path.  

Thus t h e  equations t o  be solved a re  

1 a -  a ' T = a r  y > o ,  t > O  
dy2 a t  

J 
The so lu t ion  of t h i s  system is well known and can be wr i t ten  with the aid 

of Duhamel's i n t eg ra l  (see, e.g., r e f .  3, p.  76) .  
given by 

The surface temperature is  



which can be rewri t ten i n  a form more su i tab le  f o r  numerical in tegra t ion  as 

T W - T. 1 = 2(:)1’2 l“ aSt(t - 7 ) d G  (3)  

where 4 
Symbols. 
t i o n  of surface temperature with t i m e  may be calculated.  

i s  the heating rate, and t h e  other  quant i t ies  are defined i n  the  
Thus i f  t he  heating r a t e  is known as a function of time, t he  var ia-  

A t  the  low-velocity t e s t  condition (24,000 f t / s e c )  the  model w a s  flown 
in to  s t i l l  a i r  a t  constant densi ty .  
assumes constant drag coef f ic ien t  and relates the  ve loc i ty  t o  the  time of 
f l i g h t  i s  

One form of  t he  t r a j e c t o r y  equation which 

1 

The stagnation-point heating r a t e  f o r  t h i s  t e s t  condition may be wr i t ten  
( r e f .  4) 

For constant dens i ty  and model s i ze ,  and f o r  reasonably small changes i n  
velocity,  equation ( 3 )  may be approximated by 

3 4st = woo 

If equations ( 2 ) ,  (4), and (6)  a r e  combined, t he  equation f o r  surface 
temperature may be wr i t ten  as 

Tw - T i  = 
is t L  

*L3 

where qstL i s  the heating r a t e  a t  
integrated t o  give 

- T. =-F{ &tL at 
T W  1 K 

(7) 

the beginning of f l i g h t .  This may be 

b t  + d )  + 3d + 3 l/bt + d + db t  
d2 

8 



where 

and P i s  the  term in braces.  Equation (8) is  a closed-form solut ion f o r  t h e  
time dependence of the  stagnation-point surface temperature of models f i r e d  
in to  s t i l l  a i r  f o r  short  f l i g h t s .  

When the models a re  f i r e d  through the s tar t ing-transient  flow in to  the  
countercurrent airstream, it is  no longer possible t o  obtain a closed-form 
solut ion and equation (3) must be integrated numerically. 
g ra t ion  of equation (3) was programmed f o r  the I B M  7090 computer. 

The numerical inte-  

RESULTS AND DISCUSSION 

Calibrat ion Tests a t  24,000 F't/Sec 

A s  a check on the  v a l i d i t y  of t he  technique f o r  determining heating rate 
from melting onset, several  tes ts  were performed at  conditions f o r  which the  
e f f e c t s  of ionizat ion should be small. A s  shown i n  the  tabulated tes t  condi- 
t i ons ,  t he  ve loc i ty  chosen f o r  these tests was nominally 24,000 f t / s ec  and 
free-stream densi ty  w a s  varied from 1.6~10-4 t o  2.9x10-* slug/ft3 (p/po = 0.066 
t o  0.120). 
known from theory ( r e f .  5) and from experiment (e.g., ref .  6)  and t h e  agree- 
ment between theory and experiment i s  good. 
t h e  shadowgraphs from each run t o  determine a t  which s t a t i o n  melting w a s  f i rs t  
observed. 
heating r a t e  computed from the  theory of reference 3 ,  and the  stagnation-point 
surface temperature w a s  computed as a function of time. (Averages of the ther-  
m a l  propert ies  of 7075-T6 aluminum between room temperature and melting tem- 
perature were used i n  t h i s  calculat ion.)  
these runs on an aluminum model i s  shown i n  figure 4. 
cessive shadowgraphs from the  f i rs t  s i x  wind-tunnel s t a t i o n s .  Nothing unusual 
is  seen i n  the  flow f i e l d  behind the  model until s t a t i o n  3, where s l i g h t  wisps 
of aluminum appear as a p a r t i a l l y  opaque region a t  t h e  r ea r  corners of the  
model, proving t h a t  melting s t a r t e d  before the model reached s t a t ion  3 and 
probably a f t e r  it passed s t a t i o n  2. As t he  model progresses downrange through 
the  shadowgraph s ta t ions ,  more and more aluminum i s  v i s i b l e  a t  t he  shoulders 
and i n  the  wake. Finally,  t he  model is  d is tor ted  by the  l o s s  of mater ia l .  
Shown on t h i s  f igure  i s  the  elapsed time of f l i g h t  t o  each s t a t i o n  and the  
model surface temperature a t  each s t a t ion  computed from equation (8) .  
s ign i f icant  t h a t  melting i s  first observed a t  almost exact ly  the  t i m e  when the  
computed surface temperature reaches the  melting temperature of 7073-T6 alumi- 
num (1180~ F) .  
l eads  t o  confidence i n  i t s  use a t  ve loc i t i e s  where ionizat ion i s  appreciable. 

The stagnation-point heating r a t e  a t  these conditions i s  well 

The procedure w a s  t o  examine a l l  

The inputs t o  equation (8) were then determined, with the  i n i t i a l  

A typ ica l  set of data  from one of 
This f igure shows suc- 

It is 

This provides a check on the  v a l i d i t y  of the  technique and 

The results from a l l  t he  aluminum model t e s t s  a t  24,000 f t / sec  are pre- 
sented i n  f igu re  5. This is a correlat ion plot of t h e  predicted value of  /3& 
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from equation ( 8 )  f o r  qstL 
Tw = 1180~ F versus the  measured value f o r  melting onset.  
tem a l l o w s  differences i n  heating r a t e  t o  appear l i n e a r l y  on the  p l o t .  
4 5 O  l i ne  i s  the  l i n e  of perfect  cor re la t ion  and it can be seen t h a t  t h e  data 
l i e  extremely close t o  the  l i n e .  It w a s  not always possible t o  be as ce r t a in  
of the s t a t ion  i n  which melting f irst  began as i n  the  run shown on f igure  4. 
Thus most of the  data  i n  figure 5 are presented as bars  indicating the  l 3 f i  
range from the  time a t  which melting w a s  first probable u n t i l  it w a s  first 
surely i n  evidence. In  most cases, melting w a s  probable i n  one s t a t i o n  and 
cer ta in  i n  the  next. However, i n  some runs, f o r  example f igure 4, melting w a s  
surely occurring i n  the first s t a t ion  i n  which anything unusual w a s  observed; 
these data a re  represented on f igure 5 by c i r c l e s .  The longest bars represent 
runs i n  which three s t a t ions  were needed t o  determine the onset.  These da ta  
sca t t e r  around the  45' l i n e  by +9 t o  -13 percent. 

given by the  theory of  reference 5 and f o r  
The coordinate sys- 

The 

I n  addi t ion t o  the  time required f o r  t he  model surface t o  come t o  melting 
temperature, time w i l l  be required both t o  m e l t  a f i n i t e  thickness of aluminum 
and for  t h i s  molten aluminum t o  flow off  the model and in to  the wake. Melting 
onset w i l l  not be observed u n t i l  the  t o t a l  time f o r  these three events has 
elapsed. 
the  stagnation point w a s  computed from t h e  known l a t e n t  heat of fusion of 
aluminum and heating r a t e  and w a s  found t o  be s l i g h t l y  l e s s  than one-half t he  
time required f o r  the  model t o  f l y  from one s t a t ion  t o  the  next.  This t i m e  
corresponds t o  one-half the  length of the  shor tes t  s c a t t e r  bar  of f igure  5 and 
i s  therefore small compared t o  the  time required f o r  surface melting t o  begin. 

The t i m e  required t o  melt a 0.001-inch-thick layer  of aluminum a t  

The time required f o r  molten aluminum t o  flow from the  stagnation region 
t o  the shoulder of  the model i s  d i f f i c u l t  t o  estimate since it w i l l  depend on 
whether or not surface waves form i n  the  molten aluminum. If surface waves 
form, as i s  probable, the  dynamic pressure i n  the  flow f i e l d  w i l l  tend t o  
sweep them of f  the  surface rapidly - probably i n  a few model lengths of flight. 
If surface waves do not form, then surface shear s t r e s s  w i l l  control  the time 
required. A t ab l e  of the  r a t i o  of t he  stagnation-point shear stress gradient 
f o r  the various tes t  conditions t o  the  stagnation-point shear s t r e s s  gradient 
f o r  the 24,000 f t / s ec  lowest densi ty  t e s t s  i s  given below. 

S Velocity , 
f t / s ec  '24,000 

24 , 000 1.0 - 1-33 
36 , ooo .66 
41 , 000 -52 

The shear s t r e s s  was varied over a 30-percent range i n  the  t e s t s  a t  24,000 
f t / sec  and no e f f ec t  of changing shear s t r e s s  could be discerned i n  the  da t a .  
The shear stress i s  reduced by a f ac to r  of two for the  higher speed t e s t s .  

The e f f ec t s  described above are present i n  both the  ca l ibra t ion  t e s t s  and 
the  higher ve loc i ty  t e s t s .  The heating rates and shear s t r e s ses  do not change 
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grea t ly  between t e s t  conditions, and t h i s  s imi la r i ty  implies t ha t  differences 
i n  these e f f e c t s  should remain ins igni f icant  in t he  higher ve loc i ty  t e s t s .  

Additional ca l ibra t ion  t e s t s  were performed on the nickel-plated models 
a t  similar t e s t  conditions. When these runs were analyzed, melting w a s  not 
observed u n t i l  the  computed surface temperature w a s  approximately 12600 F - 
t h a t  i s ,  f o r  comparable t e s t  conditions, the  nickel-plated models f l e w  f a r the r  
downrange before the onset of melting. This difference i s  probably due t o  two 
e f f e c t s .  F i r s t ,  even though the  nickel  s h e l l  w a s  t h in ,  it absarbed a f i n i t e  
amount of heat ,  thus reducing the  heating ra te  t o  the  aluminum subs t ra te .  
Computations (appendix A)  showed t h a t ,  over the t r a j ec to ry ,  the  heat- t ransfer  
r a t e  t o  the  aluminum should have been reduced by about 3 percent due t o  the  
presence of  the  she l l .  Second, a t  t he  t i m e  when the  aluminum (melting temper- 
a ture  1180' F) began t o  melt, t he  same computations showed tha t  t he  nickel  
(melting temperature 2630~ F) had not melted, and therefore  re ta ined some 
s t rength,  apparently enough t o  contain the aluminum melt l ayer  f o r  a short  
time. A s e r i e s  of four shadowgraphs from one of t he  nickel-plated aluminum 
model tes ts ,  shown i n  f igure  6,  supports this  contention. 
observed i n  s t a t ions  1 and 2 ,  but i n  s t a t ion  3 melting i s  de f in i t e  and s t rong-  
as i f  t he  aluminum had suddenly burst  t he  nickel s h e l l .  
contrasted with figure 4, where melting onset i s  not near ly  so pronounced. 

No melting is 

This f igure  may be 

Tests a t  Higher Velocit ies 

Since the  ca l ibra t ion  t e s t s  showed t h a t  the technique i s  usable,  t e s t s  
were conducted a t  ve loc i t i e s  near 36,000 and 41,000 f t / s ec .  
36,000 f t / s ec  were conducted i n  a countercurrent a i rs t ream which had a nominal 
ve loc i ty  of 12,000 f t / s ec  and the  t e s t s  a t  41,000 f t / s e c  i n  a nominal 
14,300 f t / s e c  airstream. 
manner as i n  t h e  lower speed t e s t s .  The calculation of heating r a t e  from 
melting onset time i s  complicated, as noted e a r l i e r ,  by the  sequence of free- 
stream conditions the  model encounters. The technique of data reduction w a s  
t o  assume heating-rate h i s t o r i e s  along the  t ra jectory,  consistent with the 
var ia t ions  of ve loc i ty  and densi ty  encountered, and t o  compute the  t i m e -  
temperature h i s to ry  a t  the  stagnation point from equation (3 ) .  The time at  
which the  stagnation point w a s  calculated t o  reach 1180~ F (1260~ F f o r  t he  
nickel-plated aluminum models) was then compared with the  time a t  which melt- 
ing w a s  first observed. The heating-rate his tory was  then adjusted u n t i l  a 
self-consis tent  h i s to ry  was found f o r  which the two t i m e s  matched. Since, as 
w i l l  be shown i n  a l a t e r  sect ion,  t he  major portion of  the  heating occurred 
i n  region 3 (see f i g .  3 ) ,  t he  calculated surface temperature i s  r e l a t ive ly  
insens i t ive  t o  the  choice of heating-rate equations i n  regions 1 and 2 .  

The tests a t  

The melting onset time w a s  determined in  the  same 

The da ta  obtained i n  the  higher speed t e s t s  a r e  shown i n  f igure 7, where 
the  measured heating r a t e s  a re  p lo t ted  as a function of enthalpy difference 
across  t h e  boundary l aye r .  Since a la rge  amount of da ta  is  now avai lable  from 
several  sources ( r e f s .  7-11), no attempt has been made t o  show a l l  the  avai l -  
able  da ta  poin ts  individually.  Instead, t he  band i n  which the  majority of  the  
shock-tube data f a l l  i s  indicated as a crosshatched area  on f igure 7. It can 
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be seen t h a t  the present data  f a l l  within t h i s  band and agree reasonably w e 4  
wj.th the theory of Hoshizaki, which i s  a l so  shown. That theory i s  representa- 
t i v e  of t h e  several  t heo re t i ca l  treatments f o r  convective heating with 
ionization. 

One s e t  of experimental data  ( ref .  7) fa l l s  subs tan t ia l ly  higher - as 
much as  a fac tor  of 2 - than the  crosshatched band in f igure 7. These higher 
heating r a t e s  were measured i n  the  shock-tube experiments of reference 7 on 
heat-transfer gages made of  nickel,  Hytemco ( a  n icke l  a l loy) ,  and gold, while 
similar measurements on platinum gages a re  within the  crosshatched band. The 
data  were taken both i n  air  and i n  N2-C02-A mixtures. The shock-tube da ta  of  
reference 11 ( i n  N2-C02-A mixtures) do not show t h i s  difference between gage 
materials.  It i s  c l ea r  from f igure 7 t h a t  there  w a s  no difference i n  heating 
r a t e  between the aluminum and nickel-plated aluminum models i n  the present 
tes ts .  

CONCLUSIONS 

From the r e s u l t s  o f  these tes ts  on l/k--inch-diameter hemispheres it can 
be concluded that :  

1. A new technique fo r  measuring convective heat t r ans fe r  has been 
developed which i s  su f f i c i en t ly  d i f f e ren t  from other  methods of measurement 
t o  be considered independent. 

2 .  The technique i s  reasonably accurate,  yielding convective heat- 
t ransfer  da ta  t h a t  i s  defined within an estimated accuracy of k20 percent a t  
ve loc i t ies  t o  41,000 f t / s e c .  

3. The da ta  agree with the  majority of t he  ex is t ing  shock-tube da ta  and 
with theories  t h a t  predict  the  e f f ec t s  of ionizat ion i n  a i r  on the  convective 
heat t ransfer  w i l l  be minor. 

4. The heat- t ransfer  r a t e s  obtained using aluminum and nickel-plated 
aluminum models a t  comparable t e s t  conditions were e s sen t i a l ly  the  same. 

Ames Research Center 
National Aeronautics and Space Administrat ion 

Moffett Field,  Cal i f . ,  March 3, 1963 
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DESIGN CALCULATIONS FOR NICKEL-PLATED MODELS 

A s  mentioned i n  the  t ex t ,  the  use of equation (3) f o r  the  nickel-plated 
aluminum models neglected the  presence of the n icke l  s h e l l .  In order t o  
design a model such t h a t  t he  thickness of the n icke l  s h e l l  would be t h i n  
enough t o  be neglected, t he  following computations were made. 

Consider a composite so l id  of two d i f fe ren t  mater ia ls  as sketched below. 

Mater ia  I 
I 

Mater ial  
2 

- 2  0 a0 
For a constant heat- t ransfer  r a t e  4 a t  the  surface y = - 2 ,  reference 3 
(.p. 322) gives the heat- t ransfer  r a t e  i n  the  body as a function of time for 
t he  materials 1 and 2, respectively,  as 

M 

(2n + 1 ) l  + ky 
q, = - 

l + G  
2 6 3  n=o 

where 

Thus the  heat input a t  
When the numerical values of t he  proper- a t  y = - 2  ( f o r  

t i e s  of n icke l  and aluminum and the  time of f l i g h t  were subst i tuted in to  
equation (A2), it was found t h a t  fo r  a nickel s h e l l  o f  thickness O.OOO> inch, 
97 percent of the  heat t r ans fe r  t o  the  nickel reached the aluminum substrate .  
Furthermore, t h i s  f r ac t ion  i s  insensi t ive t o  small changes i n  t h e  nickel  
proper t ies .  

y = 0 may be computed as a f r ac t ion  of the  heat input 
= constant) .  %=- 2 



Since the success of the  onset of ablat ion technique depends on the  L 

knowledge of the  surface temperature, it i s  advisable t o  compute the  r a t i o  of 
t he  temperature a t  y = 0 f o r  t he  composite model t o  the  surface temperature 
of t he  pure aluminum model. With the  r e l a t ion  

equations (Al) and (A2) may be integrated t o  give the  temperature of the body 
as a function of t i m e .  Integrat ion of these equations y ie lds  

r I\ 

(2n + 1 ) ~  + y + a i e r f c  
2 J a  

Specializing equation (3) of  the  t e x t  t o  t he  case f o r  = constant gives 

Substi tuting the  appropriate numerical values in to  equations (A6) and (A7) 
shows t h a t  

Ty=o - T i  
Tw - T i  

= 0.97 

These computations show t h a t  if the  presence of t he  nickel  s h e l l  i s  
neglected, when equation (3)  is  solved fo r  the  nickel-plated aluminum models, 
only small e r rors  are introduced. These e r ro r s  were compensated for by using 
the  experimentally determined temperature f o r  onset of melting on the  nickel-  
plated aluminum models. 



. 
APPENDIX B 

CONSIDERATIONS OF ERRORS AND OTHER FACTORS AFFECTING €EATING RATE 

A s  with a l l  heat-transfer measurement techniques, sources of e r ro r  i n  the  
present technique are d i f f i c u l t  t o  evaluate completely. I f  t he  ca l ibra t ion  
t e s t s  a r e  considered alone, the  deviation of the  heating rate from the  average 
i s  +9 and -13 percent.  
t he  model is  observed only a t  d iscre te  times along the  f l i g h t  path and, there- 
fore ,  melting onset i s  always observed sometime a f t e r  it might first have 
occurred. On the  average t h i s  possible systematic e r r o r  i s  6 percent. There- 
fore ,  other  sources of e r ro r  - f o r  example, changes i n  heating during launch, 
changes in  sabot separation from run t o  run and angle of  a t tack  - must 
account f o r  the remainder of the  deviation i n  t h e  ca l ibra t ion  tes ts .  

Par t  of t h i s  can be accounted f o r  by the f a c t  t ha t  

For the  tes ts  conducted a t  36,000 and 41,000 f t / s ec  an addi t ional  source 
of e r ro r  is  the  uncertainty i n  the  free-stream propert ies .  The propert ies  i n  
region 2 (see f i g .  3) a r e  t h e  l e a s t  w e l l  determined, and it i s  desirable  t o  
estimate the  e f f ec t  of t h i s  uncertainty on the heating. A breakdown of the  
calculated heating d i s t r ibu t ion  along the  f l i g h t  path f o r  a t yp ica l  run i s  
given i n  t h e  following table:  

Region Percent of heating 

1 6 
2 19 
3 75 

It can be inferred from t h i s  tab le  t h a t  even r e l a t i v e l y  la rge  e r ro r s  i n  
determining t h e  propert ies  i n  region 2 w i l l  n o t  produce la rge  e r ro r s  i n  the  
deduced heat- t ransfer  r a t e s  f o r  region 3, since region 2 contributes a rela- 
t i v e l y  small percentage of the  t o t a l  heating. 

The sum of e r ro r s  due t o  imperfect knowledge of t he  propert ies  i n  
region 3 can only be approximated. The sca t t e r  i n  the  data  taken using the  
countercurrent airstream, over and above the s c a t t e r  i n  the  ca l ibra t ion  t e s t s ,  
can be taken as a measure of the  random errors. The random s c a t t e r  i n  the  
da ta  i s  about +16 percent f o r  both the  high-velocity tes t  conditions,  which 
ind ica tes  about k5 percent addi t ional  random uncertainty.  Systematic e r ro r s  
are possible .  
ing r a t e .  Fortunately, the  ve loc i ty  of t h e  model r e l a t i v e  t o  t h e  tunnel 
(about 63 percent of t he  t o t a l  veloci ty)  i s  very w e l l  known. 
though the  heating r a t e  depends on 
i t y  i n  the  tunnel leads t o  only an 11-percent e r r o r  i n  heating r a t e .  The 
heating r a t e  depends on the  square root  of the free-stream density,  so  t h a t  a 
10-percent e r ro r  i n  free-stream densi ty  leads t o  a >-percent e r ro r  i n  heating 
rate.  Whether e r ro r s  of t h i s  order e x i s t  i n  t he  tunnel densi ty  and ve loc i ty  
is  not known a t  the  present time; however, they a re  su f f i c i en t  t o  change the  
measured p i t o t  pressure by 25 percent. When a l l  the  f ac to r s  are weighed, an 
estimate of t h e  accuracy of t h e  measurements i s  +20 percent.  In  general ,  

Total  ve loc i ty  and free-stream dens i ty  both influence the  heat- 

Therefore, even 
V3, a 10-percent e r ro r  i n  a i rs t ream veloc- 
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therefore ,  the  accuracy of t he  technique can be considered acceptable, but  not 
extraordinary.  I ts  pr inc ipa l  v i r tue  i s  t h a t  it i s  d i f f e r e n t  from other  tech- 
niques and offers  an independent method f o r  obtaining experimental data.  

The low Reynolds numbers of the present t e s t s  may lead  t o  another e f f e c t -  
t h a t  of v o r t i c i t y  in te rac t ion .  Several invest igators  ( r e f s .  13-17) have 
s tudied convective heating i n  the  vor t ic i ty- in te rac t ion  regime. The e f f e c t  
of v o r t i c i t y  in te rac t ion  on the  present data  w a s  estimated according t o  the  
theories  of d i f f e ren t  invest igators ,  and the  r e s u l t s  a r e  presented i n  the  fo l -  
lowing table ,  where the  r a t i o  of convective heating r a t e  with v o r t i c i t y  in t e r -  
ac t ion  to  t h a t  without v o r t i c i t y  in te rac t ion  i s  tabulated.  

References 1 4  
and 16 

None 
1.01 
1.02 

References 13 
and 1-5 

None 
1.08 
1 .og 

Reference 17 

None 
Not available 

1.18 

No attempt was made t o  correct  t he  da ta  f o r  v o r t i c i t y  in te rac t ion .  

For t he  present t e s t s  r ad ia t ive  heating w a s  always l e s s  than 1 percent 
of convective heating and w a s  therefore  neglected. 

The degree of  equilibrium a t t a ined  i n  t h e  shock layer  and boundary l aye r  
i s  of in te res t  i n  any heat- t ransfer  tes t  s ince it determines the  p o s s i b i l i t y  
of ca t a ly t i c  surface-action e f f e c t s  on the  measurements and i s  usefu l  i n  
assessing the  app l i cab i l i t y  of the  r e s u l t s  t o  ac tua l  f l i g h t  conditions.  
Applying the  same methods used by Rose and Stankevics ( r e f .  8) i n  t h e i r  t r e a t -  
ment of t h i s  problem f o r  shock-tube t e s t s  leads  t o  the  following statements 
f o r  t he  present t e s t s .  F i r s t ,  it i s  probable t h a t  t he  shock l aye r  has reached 
equilibrium both chemically and e l ec t ron ica l ly  a t  the  edge of the  boundary 
l aye r .  The f r ee - f l i gh t  wind-tunnel measurements of a i r  rad ia t ion  on blunt  
models of Page and Arnold ( r e f .  18), scaled t o  the  present model s i z e ,  indi-  
ca te  t ha t  t h i s  i s  the  case.  Second, it i s  probable t h a t  t h e  chemistry of t he  
boundary layer  i s  a t  l e a s t  p a r t i a l l y  frozen, s ince the r a t i o  of the d i f fus ion  
time across the boundary l aye r  t o  the  recombination time f o r  oxygen atoms (as 
defined in r e f .  5 )  i s  10-2 t o  A t  the  lowest values of t h i s  r a t i o ,  re f -  
erence 3 shows t h a t  for completely noncatalyt ic  surfaces  the  reduction i n  heat 
t r a n s f e r  i s  15 percent.  Since it i s  probable t h a t  n icke l  and aluminum sur- 
faces  a re  c a t a l y t i c ,  the  heat- t ransfer  measurements taken with these mater ia ls  
should be considered f ree  of any s ign i f i can t  reduction i n  heat t r a n s f e r  due t o  
recombination of atoms. Third, it i s  d i f f i c u l t  t o  estimate the  s t a t e  of ioni-  
zat ion equilibrium i n  the boundary l a y e r .  
mechanisms f o r  ionic recombination, t he  f a s t e s t  of which i s  c o l l i s i o n a l  

Rose and Stankevics consider th ree  
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rad ia t ive  recombination and the  slo rest i s  lec t ron  three-body recombination. 
'If co l l i s iona l  rad ia t ive  recombination is  the dominant process, then elec- 
t ron ic  equilibrium w i l l  be achieved i n  the  boundary layer  ( r e f .  8) and the  
ca t a ly t i c  a c t i v i t y  of the  surface with respect t o  recombination of ions and 
electrons cannot influence the heat t ransfer .  On the  other hand, i f  t he  elec- 
t ron  three-body recombination process dominates, e lec t ronic  equilibrium prob- 
ably w i l l  not occur i n  the  boundary layer  ( r e f .  8) and surface ca t a ly t i c  
a c t i v i t y  may be important. Thus of t he  s t a t e s  considered, the e lec t ronic  
s t a t e  of t he  boundary layer  is  the  l e a s t  cer ta in .  It can be concluded from 
the  above r e m r k s  t h a t  ca t a ly t i c  surface a c t i v i t y  is  probably not a major 
influence i n  t h e  present tests.  
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Figure 2.- Sketch of  t y p i c a l  model, sabot, and gas seal. 
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Figure 3 . -  Correlation p l o t  for aluminum data; V = 24,000 f t / s ec .  
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Figure 6.-  Shadowgraphs of melting onset f o r  nickel-plated aluminum models; 
VL = 24,460 f t / s e c ,  P, = 0.103 a t m .  
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